
.
.

,

Attitude and Articulation Control for the Cassini Spacecraft:
A Fault Tolerance Overview

G. Mark Elrown, Dr. Douglas E. Bernard, l)r. Robert D. Rasmussen

Jet Propulsion Laboratory, California 1 nstitute of Technology
Pasadena, California

ABSTRACT

This paper describes how fault tolerance has been
addressed in the design of the Attitude and
Articulation Control Subsystem for the Saturn-
bound Cassini spacecraft. Fault tolerance
objectives have strongly influenced the subsystem’s
level of autonomy, and have motivated some
significant improvements over the autonomous
capabilities of previous interplanetary spacecraft.
The subsystem can find operational configurations
following multiple failures, and can gracefully
tolerate failures in other subsystems, single event
upsets, and certain types of operator errors.

‘1’131Z CASSINI MISSION
AND SPACECRAFT DESIGN

‘Jle Saturn-bound Cassini spacecraft, shown in
Figure 1, will be launched in October 1997 by a
Titan IV launch vehicle with a Centaur upper stage.
After a~l interplanetary cruise of almost seven years
that includes several large propulsive maneuvers as
well as gravity assists from Earth, Venus, and
Jupiter, Cassini will reach Saturn in June 2004 and

~&t@,/ }~”,
MmLLc

Figure 1: The Crissini Spacecraft

establish an orbit about the plancL ‘l’he orbiter will
tour the Saturnian system “through June 2008,
using its suite of twelve science instruments to
acquire detailed images and sense the local
environnlents. The Huygens probe will be released
on the first or secol]d of many planned flybys of
Titan, t}~e only moon in the solar system with a
substantial atmosphere.

Cassini is a three-axis stabilized spacecraft with
rigidly loountecl antennas and rigidly mounted
science instruments. At close solar distances, the
spacecraft shades its thermally sensitive elements
by pointing its four meter diameter High Gain
Antenna directly at the Sun, while communicating
with Earth via one cjf two available Low Gain
Antennas. During the Saturn orbital tour, the
spacecraft attitude is much less constrained, and
scientific objectives can dictate the spacecraft
attitude for periods of UP to sixteen hours per day.
I)uring the remaining eight hours per day, the
spacecraft points its High Gain Antenna to Earth
and “plays back” recently gathered scientific data
from a four gigabit onboard recorder.

Three radioisotope thermoelectric
{:eneratars (RTGs) provide approximately
825 watts at the beginning of the mission,
decaying to 650 watts at the end of the
]aission. All onboard customers receive
switchecl power from this source via a 30
volt power bus. ‘I’he onboard avionics are
distr ibuted in several engineering
subsystems, including:

The Command and Data Subsystem (CDS),
which stores ground-provided command
sequences, and then distributes stored
commands at the appropriate times to the
engineering subsystems and science
instruments. CDS also coordinates all
onboard intercommunications, and collects
and formats the science and engineering
telemetry.

.’

The Radio l+cquency Subsystem (R~S),
which rcccivcs ground-transmitted
commands for the CDS, and transmits CDS-
formatted telemetry to the ground.

‘l’he Attitude and Articulation Control
Subsystem (AACS), which will be described
in more detail in the following section.

ATTITUDE AND ARTICULATION
CONTROL SUBSYSTEM

Cassini’s Attitude and Articulation Control
Subsystem (AACS) estimates Irnd controls the
sprrcecrafi attitude, responding to ground-provided
pointing goals for the spacecraft’s science
instruments and/or communications antennas with
respect to targets of interest (e.g. Saturn, Earth).
The AACS also executes ground-commanded
spacecraft velocity changes.

Figure 2 is a functional block diagram of the Cassini
AACS hardware. Each rounded box represents a
separately powerable AACS assembly. Stacked
groups of these boxes indicate the available
redundancy. Circles indicate propulsion system

h to the C-anurbmd ad flat. Bus

elements that are controlled by the AACS.

The AACS supervisory, estimation, and control
algorithms are executed by one of two block-
redundant AACS Flight Computers (AFCS). Each
AFC houses o 175(IA microprocessor with 512
kwords of Random Access Memory (RAM). The
object-oriented flight software is written in Ada; see
Reference 2 for more information on the AACS flight
software architecture.

The AFCS are remote terminals on the spacecraft’s
MII.-S’I’D-1553B Command and Data Bus. Each
AFC receives ground commands from CDS via this
bus, and provides telemetry and other ancillary data
to CDS for subsequent distribution to ground and
onboard customers. For more details on Cassini’s
CDS and the Command and Data Bus, consult
Reference 1.

The prime AFC coordinates the activities of all the
AACS ~,eripheral bardware via two-way transactions
on a separately dedicated AACS Bus. The AACS
Bus conforms to hlII,-STD-1553B electrical
standa] ds, but uses customized protocols that can
support more than 32 remote terminals and message
lengths greater than 3’2 words.

& W
B1.P-llerd Endr,a 21 Thrus!ef

KEY:

o . , wp9ml.31yp0warat4eAm-s Es8nii’j
o . d~ dtht

sdsdas$wMi

a
. m mlior.nm4n

rwi”ndancy Klgti

o . , prq)”lslcm sysl em elwrwm

Figure 2: Cassini AACS Functional Block Diagram

l’hrec-axis att.itmdc sensing is provided by both block-
redundant Inertial Reference Units (IRUS) and block-
redundant Stellar Reference Units (SRUS). Each IRU
contains four hemispheric resonator gyroscopes,
a r r a n g e d i n a n orthogonal-triad-plus-skew
configuration. Each SRU is a fifteen-degree square
field-of-view star tracker that can provide either AFC
with up to 50,000 pixels per second through a
dedicated Pixel Bus. AFC-resident software
algorithms are able to establish and maintain stellar
reference by comparing incoming pixel frames to an
onboard catalog of approximately 5000 stars. Three to
five stars are commonly tracked at any one time.

AACS acquires stellar reference by first locating the
Sun and then Sun-pointing the IIigh Gain Antenna
using feedback from one of two available Sun Sensor
Assemblies (SSAS). Each SSA provides two-axis
digital gray-coded output over a 64 degree square
field-of-view. Once stellar reference is acquired,
AACS can maintain stellar reference while turning at
slow angular rates; this allows the IRUS to be turned
off and left off during most of the mission’s seven-year
interplanetary cruise phase.

‘l’he desired telecommunications rates during
interplanetary cruise only require antenna pointing
accuracies of a few milliradians. The AACS provides
this level of pointing control via infrequent firings of
0.8 Newton hydrazine thrusters. The thrusters and
all the other propulsion elements are managed by one
of two available Valve Drive Electronics (VDE)
control units.

Scientific observations during the Saturn orbital tour
require higher accuracy and stability, as well as
frequent spacecraft repositioning. During this mission
phase, the AACS employs three orthogonally oriented
Reaction Wheel Assemblies (RWAS), and the
thrusters are used primarily for momentum

~, mnagement, Turn rates during both the cruise and
orbital phases are kept below 0.75 deglsec.

Small velocity corrections are accomplished by timed
firings of the hydrazine thrusters. For large velocity
corrections such as Saturn Orbit Insertion (S01), the
AACS employs one of two available 45o Newton bi-
propellant engines. Each engine nozzle is articulated
by two physically-dedicated Engine Gimbal
Actuators (EGAs) whose extensions are managed by
either of two available Engine Gimbal Electronics
(EGE) control units. Engine burns are terminated
autonomously based on feedback from a single
accelerometer (ACC).

CASSINI’S
FAUI .T TOLERANCE OBJECTIVES

Cassini has two fundamental fault tolerance
objectives that stron~:]y influence its level of
autonomy:

1) During all mission phases, the spacecraft must be
able to fail safe by autonomously locating and
isolating any single failure, recovering to a thermally
safe and commendable attitude, and then waiting for
further instructions frcm] the ground. Since ground
operators only attempt to make contact with the
spacecraft once per week during low-activity mission
phases, the spacecraft must be able to keep itself safe
for at least two weeks.

2) During a few selected time-critical activities (e.g.
I,aunch, SOI, and Probe Relay), the spacecraft cannot
afford to simply isolate :i failure and wait for ground
assistance. At these times, the spacecraft must be
able tQ foil operational by autonomously recovering
a much larger set of its capabilities and then
proceedi]lg with a previously uplinked “critical”
command sequence.

It is important to note that the ground-generated
command sequences for time-critical activities
contribute an important part of the spacecraft’s
capability to fail operational. Following an
autonomously detected failure in a critical sequence,
the CDS temporarily suspends the sequence,
coordinates an autonomous fail-safe response, and
then restarts the sequence from the last achieved
“checkpoint”. Each critical sequence has several
such “checkpoints”, each of which is responsible for
enforcing the desired differences between the fail-safe
configuration and the operational configuration that
is needed for the subsequent critical sequence
activities.

AACS AUTONOMOUS FAULT
TOLERANCE ALGORITHMS

Figure 3 illustrates the architecture of the AFC-
resident flight software algorithms that pm-form
autonomous detection, isolation, and recovery from
failures of the AACS equipment and the AACS-
controlled propulsion elements. The primary
architect ural goals, all of which are motivated by
recognized shortcomings of past interplanetary
spacecraft, are to:

1)

2)

3)

irnprovc the diagnostic accuracy of the algorithms
try creating and making usc of explicit “goodness”
indications in addition to the typically available
“badness” indications

improve the operability of the spacecratl by using
knowledge of the subsystem’s present goals to
choose an appropriate level of response

decompose the autonomous tasks in a natural
manner to facilitate near-term analysis and
testing, as well as long-term comprehension and
augmentation.

I’}m primary architectural components are:

Error Mortitors, which test local performance
measures against expectations, apply discriminating
filters, and then output a color-coded ,opinion. The
available output colors and their interpretations are:

Black: no opinion
Green: performance meets expectations

Yellow: performance is unexpected, but does not
merit autonomous response

Red: performance is anomalous, and r%erits
immediate autonomous response

Gmwd Camnded Mnsk Stiles Gmn&ComMnded Ma* %1.S

.—..

5
. ..—
“T---

t

r
Ped.nnl. Mm&llw

kcllvatlon Rules

11
2

3
.

L

k%w-8w
Knv*tom

-&+

Ha*am COnf.w.um
awed Ad’.iw Gods

I

Actirration Rules, which evaluate subsets of the
color-coclcd error rnoriitor outputs in the context of the
subsystcm’s current hardware configuration and
activity goals, diagnose the most likely causes of
anomalous behaviors, and then activate one or more
appropriate response scripts.

Response Scripts, which isolate failed equipment
and recover the desired level of subsystem
function, ality. They do so by issuing commands
directly to the subsystem, directing the activities of
autonoll]ous repair managers, andlor requesting
external assistance via CIE-collected alert messages.

Repair Managers, which track the success or failure
of past corrective racasures for each piece of
equiprncnt, and then determine the most appropriate
correcti~re measure to try next. Repair Managers use
the same command interface as Response Scripts, and
thus they can be thc}ught of as special-purpose
subroutines that are exercised by the Response
Scripts.

All four of the above-described components are
exercised during each AACS computation cycle (i.e.
every 175 msec). The Error Monitors are distributed
throughout the flight software, usually at the earliest
possible test point. Tests are performed and opinions
are gex]erated throughout each computation cycle.

lesponse Scrlpti

1

e
L .

4
4

Nell M.,.sqp! to 03s

‘=W’’F%L
---41Rs@r Maria H.r Ac!J.,Ic+.

.—+..

u

. — — . -

1 -=iuI 23” U
I I

I Ha*. . Ccflflm km
Cum-d AC+JWW Goals I I

I 1 I AAcscanm.md3
I __L-, ~....-l= ,

L-. . . . ““’’”’’”’”””’’”””’ -__--H:Y
Figure 3: Architecture of AACS Fault ‘1’olerance Algorithms

. .
.

,

The Activation Rules, Response Scripts, and Repair
Managers are all centralized and are executed during
reserved time slices at the cnd of each computation
cycle. Response Scripts are prioritized via a simple
ordered list. TWO or more Response Scripts can be
simultaneously active; however the actions of lower
priority scripts are delayed when higher priority
scripts consume all of the available computation time.

If necessary, ground operators can tailor the behavior
of these algorithms through two sets of comrnandable
mask states. Error monitors can be individually
masked to prevent autonomous responses to
particular physical assemblies. For instance, ground
operators could choose to mask the monitor that tests
the tachometer output of RWA2, while leaving
unmasked t}le similar monit,ors for RWAS 1, 3, and 4.
When an error monitor is masked, its output color
irnrncdiately becomes black. Activation rules can also
be individually masked, preventing autonomous
responses to particular diagnoses. For instance,
ground operators could choose to prevent activation of
responses to apparently stuck-closed hi-propellant
latch valves, while continuing to allow activation of a
more general response to an underperforming bi-
propellant engine.

AA(X AUTONOMOUS FAULT
TOLERANCE CAPABILITIES

‘l’his section summarizes the autonomous fault
tolerance capabilities that the Cassini AA(X3 provides
via the actions of its dedicated fault detection,
isolation, and recovery algorithms, in addition
autonomy that has been embedded at
appropriate places in the AACS flight software.

Failing Safe

to the
other

‘l’he AACS is an active participant in Cassini’s
spacecraft-wide fail-safe response, which is
autonomously directed by the CDS, Upon receiving
the designated fail-safe command from the CDS, the
AACS activates a special-purpose Response Script;
this script establishes a minimum-power AACS
hardware configuration, enforces a benign propulsion
system state, and starts acting on a CDS-provided
fail-safe attitude goal.

Returning to Figure 2, the “safing-critical” AACS
hardware sets are indicated by bold borders. At least
one member of each “safing-critical” set must bc
functioning properly in order for the AACS to

maintai]l a thermally safe, commandablc attitude.
The AA(Y3 can autonomously detect fai]urcs of prime
“safing-critical” hardware and initiate replacement of
any failed prime with its block-redundant unit.

Onboard vector propagation algorithms are used to
periodic[illy recalculate the direction to the fail-safe
pointing target (e.g. the F;arth). ‘1’his allows AACS to
continue providing a safe commendable attitude for
an indefinite period while waiting for the ground Lo
uplink new pointing commands.

l?ailin~” Operational

As previously drscrilmd, Cassini must be able to fail
operational during I,aunch, Saturn Orbit Insertion
(SOI), ar~d Probe Relay. Since the AACS “safing-
critical” hardware (see Figure 2) supports both the
I,aunch and Probe Relay activities, it is not difficult
for the AACS to resume these activities following a
fail-safe response. SOI, however, requires the AACS
Lo resu]ne and complete a commanded velocity
change. l’his nlotivatcs additional AACS autonomy
above and beyond the fail-safe capabilities, including:

● Autonomous reconfiguration of the propulsion
system to support a second burn attempt on the
backup engine,

● Autonomous adjustment of the AV-to-go, in order
to account for the partial AV achieved during a
prio] burn attmnpt, and the time delay associated
with the later burn attempt.

Tolerating Multiple Failures

Cassini is not required to survive all possible second
failures following a prior failure, since doing so would
require triply redundant equipment. But multiple
recoverable failures are certainly possible on a
mission of this duration, and therefore the AACS is
designed to autonomously find an operational
configuration when orm still exists. If necessary, the
Repair Managers can autonomously exercise several
independent degrees of freedom that are provided by
the hard ware and software architecture, including:

Independent prime selections. The prime
selectio]l for each type of assembly can be made
independent of other prime selections. This allows
the AA(:S to autonomously recover from a failure of
SRU_A by simply niaking SRU_B the prime SRU,
while continuing to use the remaining healthy A side
hardware (e.g. SSA_A, IRIJ_A,ctc.).

● ✎

*

Independent bus selections. The AFC can operate
the two AACS Busses in a time-multiplexed manner,
communicating with different subsets of peripherals
on different busses during the same computation
cycle. Each assembly’s bus selection can be made
independent of other bus selections. For instance,
following a prior failure of SRU_A, AACS can
autonomously respond to a failure of the AACS Bus A
transceiver on SRU_B by changing SRU_B’s bus
selection to AACS BUS B.

Composite prime sets. Where feasible, the AACS
can mix subsets of equipment from block-replaceable
units to form a composite prime set. For example,
following a failure of one gyro in IRU_A and one gyro
in IRU_B, the AACS can autonomously construct a
composite “prime 1 RU” using three gyros from IRU_A
and one gyro from 1 RU_B. A composite set of “prime
thrusters” can also bc constructed using subsets of
thrusters from the two available thruster branches.

After successfully responding to an anomaly, the
AACS supports ground-based troubleshooting by
allowing ground operators to power up backup AACS
assemblies, send commands to them and receive
telemetry from them while keeping them in an offline
standby mode. If a particular assembly has indeed
failed and can no longer be used, ground operators
can inform the AACS flight software of this
conclusion by changing the “health state” of that
assembly. ‘I’he autonomous Response Scripts check
the “health states” of backup assemblies before
attempting to bring them online as replacements for
apparently failing primes.

Tolerating Single Event Upsets

Ionizing radiation can induce currents in solid state
materials that are sufficient to cause logic state
changes, known as Single Event Upsets (SEUS).

Primary sources of ionizing radiation in the space
environment are galactic cosmic rays and the solar
wind. For an excellent overview of radiation sources
and radiation tolerance issues for spacecraft
computers, consult References 3 and 4.

SFIUS are transient effects that can be corrected by
re-commanding the desired state of the affected logic
circuit. The challenge with SEUS is to minimize the
frequency at which they occur, and to detect them and
locate them properly when they do occur. The
Cassini AACS approach has been to use parts that
won’t upset too frequently in the mission’s “worst-
casc” radiation environment (i.e. a solar flare at 0.6

AU), and to provide the following autonomous
safcgua] cls agairlst tlmir effects:

AFC I<r ror Detection and Correction (EDAC).
T}lc AIK; automatically detects and corrects all the
single-bit errors that it encounters in its RAM. The
AFC call also detect multiple-bit errors, which can be
created by the accrual of two or more SEUS within
the same word. Upon encountering a multiple-bit
error, tl]e AFC immediately resets. Resetting dots
not corrxct the error, but gives CDS the opportunity
to eithc] autonomously rc-loarl the AF’C memory, or
prime-select the other Al”C.

Message Ckecksurns. All the critical information
that entt:rs or exits the AA(X via the Command and
I)ata Bus is transferred via checksummed messages.
All AACS Bus transactions in both directions are also
checksummed.

State Enforcement. F;vcry commandablc state of
every AACS peripheral assembly is explicitly enforced
via AACS Bus commands during each computation
cycle. ‘1’}lere are no “set ancl forget” commands.

Reset Recovery of Peripherals. When activated,
the autonomous Repair Managers for the peripheral
AACS assemblies proceed initially on the hypothesis
that the assembly has cxpcricnced an SEW or some
other reset-recoverable failure. Each Repair Manager ‘
attcrnpts a minimum of two resets before proceeding
to isolate and/or replace an apparently failed
assembly. Each Repair Manager also recognizes that
SEUS can occur repeatedly, and is willing to continue
resettin{! an assembly as long as the subsystem can
tolerate that reset frequency. If an assembly
responds to an autonomously requested reset with
error-free behavior for a sufficiently long interval, the
Repair Manager “times out” and forgets all prior
resets. ‘l-hc assembly is only isolated and/or replaced
after several closely .spaccd resets have failed to
correct tllc faulty beha~’ior.

The autonomous Response Scripts never “give up” on
any of the assemblies, no matter how many prior
assembly failures are detected, or the frequency with
which such failures arc observed. If SEUS occur at
unexpectedly high rotes across a set of block-
replaceable units, they can only cause unnecessary
power cycling and/or resetting of the affected units as
they are repeatedly isolated and replaced in the
opcratio]]al configuration] 1.

.

Tolerating Failures of Other Subsystems

As outlincrl previously, the Cassini AACS is
dependent on several other avionics subsystems for
power, status information, and directions. Failures of
other subsystems could cause an interruption or loss
of one or more services. The AACS design helps
contain the effects of failures in other subsystems by
tolerating:

Interruption of I’ower. All of Cassini’s engineering
subsystems, including the AACS, are required to
tolerate infrequent power outages of up to 37 msec in
duration. ‘1’here are no credible faults in the power
supply and distribution system that cause longer-
duration interruptions. The Cassini AACS meets
this requirement via an integrated hardware and
software solution:

1) Capacitive power storage in each Al?C’s power
supply keeps the RAM flight software program
intact across a brief power outage.

2) A ROM-resident “boot” program recognizes the
difference between a “warrnboot” (e.g. from a
brief power interruption or a flight-software-
initiated reset) and a “coldboot” (e.g. from a
previously unpowered state). The ROM responds
to a “coldboot” by performing a CDS-assisted
memory load, but can autonomously respond to a
“warm boot” by quickly val idating and
transferring execution back to its unaffected
RAM program.

Loss of Status Information. Other subsystems
provide AA(X3 with power switch status, engine
temperatures, and engine chamber pressures via the
CDS-controlled Command and Data Bus. The CDS
also provides AACS with spacecraft time and
synchronization signals. AACS is required to
tolerate interruption or loss of all this information,
which could occur during the CDS autonomous
response to failures affecting the Command and Data
Bus. AACS employs two primary strategies,
depending on the criticality of the information to the
subsystem:

1) Some information, such as the spacecraft time, is
essential to AACS flight software processing; in
order to tolerate loss of this data, AACS must
provide a backup source. In the absence of fresh
valid time transmissions from CDS, AACS
propagates its own internal time, and uses that
time instead. When and if fresh valid time

transmissions resume, the AACS monitors the
difference betweex] the internally-propagated
tinlf and the new CIJS-transmitted time. If a
significant discoxltinuity exists, a Response Script
is activated that suspends all time-sensitive
activities, and then synchronizes to the new time.

2) Other information, such as the engine
tern])erature and pressure measurements, are
used only for fault detection purposes. This
information is not essential to the AACS, and
need not have a backup source. In the absence of
fres}l valid engine temperature and pressure
data, AACS immediately sets the output colors of
the affected error monitors to black (i.e. “no
opir]ion”), and continues to evaluate the engine
performance usir,8 the remaining available
info] mation. For instance, loss of an engine’s
chamber pressu]e]ncasurement would prevent
that measurement from contributing to an engine
failure diagnosis, but would not prevent AACS
fron, arriving at the same diagnosis via the
accelerometer output.

Corruption of Status Information. All incoming
status il]formaticm is tested for freshness using either
an explicitly provided time-tag, or a monotonically
increasir]g message counter. All critical information
is also checksummed.

Failure of the CDS. Although the Cassini CDS is a
critical engineering subsystem that must be fault
tolerant (see Reference 1), the AACS is expected to
tolerate a long-term loss of CDS services, and to
respond by establ ishing a thermally safe ,
comrnandable attitude that can support. ground-in-
the-loop CDS recovery activities. The AACS meets
this requirement by monitoring the length of time
that certain fundamental Command and Data Bus
transactions (e.g. the spacecraft time broadcast) have
been absent, and then activating an “unsupported
safing” Response Script. This Response Script
recognizes that CDS is not available to coordinate
AACS-requested changes in the AACS hardware
configuration, and so it simply initiates a turn to an
internally-stored “default” safing attitude goal (e.g.
Low Gain Antenna 1 to the Sun) using the currently
available sensors and actuators.

Tolerating Operator Errors

Previous interplanetary spacecraft have not been
required to tolerate operator errors in a graceful
manner. Instead, previous missions have relied
heavily on ground-based constraint checking, and
their spacecraft have been programmed to execute
their fail-safe response upon encountering anything
resembling an errant command. Previous
interplanetary spacecraft have also been equipped
with a CDS-resident “Conlmand Loss” response that
safeguards against serious operator errors by
enforcing the fail-safe configuration following an
extended absence of ground contact.

Cassini also has a CDS-resident “Command Loss”
response, and the Cassini AACS is not required to
tolerate operator errors. Admittedly, it is very
difficult to autonomously guard against all the
possible errors of both commision and omission.
However, the Cassini AACS has been designed to
tolerate those types of operator errors that it can
recognize and ..disposition in a straightforward
manner. Autonomous features at the user interface
include:

Syntax Validation. ‘I’he AACS flight software
verifies that all incoming commands have the proper
checksum and proper length. In addition, the
arguments of each command are verified to be within
pre-determined legal limits.

Configuration Safeguards. The AACS flight
software recog n i zes th a t s ome op era t ing
configurations are fundamentally unsafe, and refuses
to execute any command that would yield such a
configuration. Many of these safeguards apply to
configuration of the propulsion system. For example,
AACS recognizes that it is unsafe to have any of the
propulsion drivers powered without having any
control or knowledge of their behavior. Therefore,
AACS rejects commands to power any of these drivers
when the prime VDE control unit is powered off.

Resouree Requirwnw?nts. The AACS flight software
guards against errors of omission by autonomously
requesting and verifying the availability of all the
required resources for each activity before even
attempting to begin that activity. As an example,
when the AACS is commanded to reaction wheel
control mode, it first requests power for the three
prime reaction wheels (these requests may be
redundant with the pre-existing configuration), and
then verifies that the three reaction wheels are

comrnu]licating via AACS Bus transactions. ‘Me
flight software also guards against errors of
commission by rejectin~ any commands that would
remove a required resource. For instance, when
the AACS is in reactic)l] wheel control mode, it will
reject ally commands to power off any of the three
prime reaction wheels.

Modal {Constraints. The AACS flight software
recognizes that certain AACS commands cannot be
executed in certai]l AACS Modes, and explicitly
rejects those coxnrnands that are incompatible with
the current mode. For instance, the AACS will reject
user commands to reposition the EGAs during engine
burns, since EGA extensions are under autonomous
control at that time.

.4ttitudc Constraints. The AACS flight software
enforces ground-prescribed attitude constraints,
autonon]ouly substituting a “close as possible”
attitude goal until the commanded attitude once
again satisfies constraints. This feature not only
protects against outright operator errors, but also
handles unforeseeable interactions between operator-
designed command sequences and the autonomous
recovery from a failure-induced attitude excursion.
For rnorc details on Cassini’s treatment of attitude
constrail Its, consult Reference 5.

AACS pI ovides the CDS with a running count of the
number of commands accepted for execution. When
AACS rejects a command for any of the above-
mentioncd reasons, the count is not incremented.
Sequences can choose whether or not to monitor this
counter and respond to deviations from the expected
counter value.

SUMMARY

Fault tolerance considerations have motivated several
advancelnents in the Cassini AACS autonomy. These
advance] nents support Cassini’s fundamental needs
for both fail safe and fail operational capabilities, and
also allow the AACS to more gracefully tolerate single
event upsets, multiple failures, failures in other
subsystems, and operator errors.

ACKNOWLEDGMENT

‘l’his wc~rk was performed at the Jet Propulsion
Laboratory, California lnstititue of Technology, under
contract with the National Aeronautics and Space
Administration.

. .
1,

v

ltIWERENCES

1)

2)

3)

4)

5)

T. K. Brown and J. A. Donaldson, “1’’ault
Protection Design of the Command and Data
Subsystem on the Cassini SpacecraR”, 13th
Annual Digital Avionics Systems Conference,
October 1994.

J.C. Ilackney, D. E. Bernard, and
R. D. Rasmussen, “The Cassini Spacecratl:
Object Oriented Flight Control Software”, 16th
Annual AAS Guidance and Control Conference,
February 1993.

R. D. Rasmussen, “Spacecraft Electronics Design
for Radiation Tolerance”, Proceedings of Lhe
IEEK, Vol. 76, No. 11, November 1988.

R. M. Manning, “1.ow Cost Spacecraft Computers:
Oxymoron or Future Trend?”, 16th Annual AAS
Guidance and Control Conference, February
1993.

R. D. Rasmussen et al, “Behavioral Model
}’ointing on Cassini Using Target Vectors”, 18th
Annual AAS Guidance and Control Conference,
February 1995.

